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We use the following notation: P is a Dirichlet polynomial i.e.,

P(x) = I ankx"k
k~1

(1.1 )

where nk , k= 1, 2, ... , m, are real numbers, O~nl <nz < ... <nm ; a,,(P) is
the coefficient of x n in P(x), and the length of P is the number of non-zero
coefficients in P. Further, p and q are always conjugate indices, i.e.,
1~ p ~ +00 and lip + llq = 1. The interval over which the Lp-norm is
taken is assumed, without loss of generality, to be of the form [c, 1],
o~ c < 1. (Since the length of a polynomial is not translation invariant, we
cannot reduce all considerations to the case c = 0.)

In [1] the following lemma played a crucial role: For every r E (0, 1) and
for every polynomial P of length ~ m

(1.2 )

where K = K( c, p; m, r) depends neither on n nor on the polynomial P.
In this paper we give the following improvement of (1.2):

THEOREM 1. If P is a Dirichlet polynomial of length m, given by (1.1)
and if

for k = 1, 2,»>, m, k =f. s
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(1.3)
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then
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(1.4 )

where C = C(c, m) depends neither on ns nor on P.

The proof gives some information about the constant C. Let A =
(2e/(1-c l/

(m-l)))m-l. Then (1.4) holds with C=A ifp= 00, and with C=
2m A( 1+ A) if p < 00. The estimate (1.4) is the best possible in the sense that
there exists Em> 0 and polynomials Pm,n' n = 1, 2, ... of length m such that

(1.5 )

(see [3]). It is sufficient to let Pm,n=xn(l-x)m I. Then an(P)= 1 and it is
easy to check that

so that (1.5) holds with Em = l/Km.
Instead of (3) we can consider the apparently more general condition

Min Ink - n,l = h.
k,k #s

If the exponents nk in (1.1) satisfy (1.6) with h =I- 1 let

(1.6 )

m

P(x) = L a'k x '\
k~1

and vk=l/h(nk+(l-h)/p). Since

anJP} = a,,(p),

and
- IIIIPII Lp(ch.ll = h p IIPII Lp("l)'

applying Theorem 1 to P we obtain the following result: If P is a Dirichlet
polynomial of length m, given by (1.1), if (1,6) holds, and if h ~ ho> 0, then

where C = C(c, m, ho} is independent of n" h, and P,
From

(l/lan,l) IIIankxnkl1 = Ilxn
,,- L hnkXnk\1 (1.7)

Lp("l) k#s Lp("I)
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where bnk = -anjan" it follows that any upper bound for the coefficient
Ian,! provides a lower bound for the right-hand side of (1.7). Thus
Theorem 1 can be phrased in the following dual form:

THEOREM I'. Let A~°and

d,jx\ N) = inf {II x)· - £bjx)'J II :bj E R, Aj ~ 0, IAj - ),1 ~ I}.
j~ I Lp(c.l)

Then there exist positive constants K I and K2, depending only on c and N,
such that

KI(A+1)-N-l/p~dcjx\N)~K2(A+1) N-l/p. (1.8)

Under more restrictive conditions (1.8) was proved by Borosh, Chui,
and Smith [3].

Two results, closely connected to Theorem I', should be pointed out.
Saff and Varga have proved the following theorem (part one of

Theorem 3.1 in [4]).
Let the k + 1 integers Ilo,"" Ilk be fixed, with °~ Ilo < III < ... < Ilk' For

each non-negative integer n, set

where the infimum is taken over all (co, Cj, ... , ck_dER\ and where
1~ q ~ Cf). Then

where

Ck = Ck(q) := inf{ lie -/(tk - h(t) )11 Lq(O, + 00): hE 1rk - d

and 1rn is the class of all polynomials of degree at most n.
In [2] one of the authors, using a theorem of Smith [5], has shown that

the equality

inf {IIX-ie
- t ajxAJl1 : ajE R, AjE R, IAj - AI ~ 1, j= 1,... , I}
j~ I Leo(O,I)

= inf{ II x), (1 - xP(1og x)) II L",(O, I) : P polynomial of degree ~1- 1}

holds if A< 1, and has conjectured that the same equality holds also for
), ~ 1.

640/48/2-2
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2. PROOF OF THEOREM 1.

We shall consider first the case p= 00. Let M=maxC",x"'IIP(x)l,
0::::; c < 1, let r E (c, 1) and a = r 1

/(m - 1). Evaluating the polynomial P at m

points ai, j = 0, 1,..., m - 1 we obtain a system of m linear equations

m

I a"k aillk = P(ai ),
k~l

j = 0, 1,... , m - 1. (2.1 )

The determinant of this system is the Vandermonde determinant

A _ A (,.,111 112 11m ) _
LJ m - LJ m v. ,rJ. , ... , ('J. - (2.2)

and so

L1 m = TI (alii - a"}).
i,j= 1,...• m

i<j

(2.2)

(2.3 )

If Ai.k denotes the minor of L1 m corresponding to the entry in the jth row
and the kth column, we obtain from (2.1) that

k= 1,...,m. (2.4 )

Explicit expressions for the minor Ai,k are known, and can easily be
deduced. If a"k is replaced by z, from (2.2) and (2.3) it follows that

m

I (-1)i+ kZi- 1Ai ,k
)~ 1

where

Computing the coefficient of zi- I on the right-hand side we find that

( _I)i+kA _(_l)k-l A (_I)m-i(J .(,.,111 ,.,"k-I,.,"k+l ,.,lIm)1,k - LJm-l,k· m-J v.. , ••• , v. ,v. , ... , v. •

(2.5)
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Here (J q' q = 0, 1,..., m - 1 are the elementary symmetric functions in m - 1
variables:

and (J i Y I,..., Ym - I) =L Y'I YS2 ••• YSq

where the summation is extended over all subsets (SI, S2,"" Sq) of car
dinality q of the set (1, 2,..., m - 1).

Combining (2.4) and (2.5) we obtain

We observe next that IP(ex j - 1 )1 ~M and that the quantities (Jm-j are
non-negative. Since I. (J m _ i Y \> •••, Ym _ d = n (1 + Yj), we obtain

I
f (_I)j-l(Jm_)exnl, ...,exnk-l,exnk+I,...,exnm)p(exj-l)1
I~l

m
~M'(J (n l Nnk-I nk+1 Nnm)-...;::;: L., m - j tY. , ... , v.. , r:x , ... , v..

i~ 1

1~j~m
j#k

~2m-lM.

On the other hand, from (2.3) it follows that

I~I = (ex nl _ ex nk ) ... (iX nk - 1 _ ex nk )( ex nk _ ex nk + 1 ) ••• (ex nk _ ex nm ).
L1 m - 1,k

If j < k we have ex nJ - ex nk = ex nJ(1 - ex nk - nJ)> exn;( 1 - ex); and if j > k, iX nk - ex n,>
ex nk (1 - ex). So

It follows from (2.6), (2.7), and (2.8) that

(2.8)

where n = nk . (2.9)
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Since rxm - I = r, and r was an arbitrary number in [e, 1) we can choose now
rx in [el/(m -1), 1) so that the right-hand side of (2.9) takes its smallest value.
For that we need to distinguish two cases:

(i) if n!(n+ 1)?e 1
/(m-l), we choose rx=n!(n+ 1);

(ii) if n!(n + 1) < e1/(m-l), we choose rx = e1/(m-l).

In both cases we have

1 ( l)n
rxn ~ 1+~ ~e.

In the first case we obtain

in the second case

Hence we have

(2.10 )

where IIPlloo = max,,,;; x";; 1 IP(x)1 and

We consider now the case 1~ p < 00. Let s be a non-negative integer and
let

Q(x) = - rP(t) t' dt.
x

Clearly,

Thus 0 is a polynomial of length ~ m + 1 and Q + C is a polynomial of
length ~m. We shall apply the inequality (2.10) twice: first to the
polynomial Q to estimate the constant term C, then to the polynomial
Q(x) + C to estimate all the coefficients anj(nk + s + 1).
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First application of inequality (2.10) gives

Iq :s; A II QII w .

Second application gives

187

(2.11 )

\ank \I(n k + S + 1) :s; A(n k + S + 2 )m - 1 II Q+ ell w . (2.12 )

From (2.11) and (2.12) we deduce

where we can take B = A(A + 1). Since

Q(x)= - rP(t)tSds,
x

we have

IIQII ex; :s;rIP(t)1 t S dt
e

(
1 ) l/q

:s; sq+ 1 IIPIILp(c,I)

or

(
1 ) I/q

IIQlloo:S; s+1 IIPIILp(e.I)

where lip + llq = 1. From this inequality and (2.13) follows that

Choosing here s = nk we obtain

and the theorem is proved.
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