An Estimate for the Coefficients of Polynomials of Given Length

B. Baishanski and R. Bojanic
Department of Mathematics, Ohio State University, Columbus, Ohio 43210, U.S.A.
Communicated by Paul G. Nevai
Received February 25, 1985
DEDICATED TO THE MEMORY OF GÉZA FREUD

1

We use the following notation: P is a Dirichlet polynomial i.e.,

$$
\begin{equation*}
P(x)=\sum_{k=1}^{m} a_{n k} x^{n_{k}} \tag{1.1}
\end{equation*}
$$

where $n_{k}, k=1,2, \ldots, m$, are real numbers, $0 \leqslant n_{1}<n_{2}<\cdots<n_{m} ; a_{n}(P)$ is the coefficient of x^{n} in $P(x)$, and the length of P is the number of non-zero coefficients in P. Further, p and q are always conjugate indices, i.e., $1 \leqslant p \leqslant+\infty$ and $1 / p+1 / q=1$. The interval over which the L_{p}-norm is taken is assumed, without loss of generality, to be of the form [c,1], $0 \leqslant c<1$. (Since the length of a polynomial is not translation invariant, we cannot reduce all considerations to the case $c=0$.)

In [1] the following lemma played a crucial role: For every $r \in(0,1)$ and for every polynomial P of length $\leqslant m$

$$
\begin{equation*}
\left|a_{n}(P)\right| \leqslant \frac{K}{r^{n}}\|P\|_{L_{\rho}(c, 1)} \tag{1.2}
\end{equation*}
$$

where $K=K(c, p ; m, r)$ depends neither on n nor on the polynomial P.
In this paper we give the following improvement of (1.2):
Theorem 1. If P is a Dirichlet polynomial of length m, given by (1.1) and if

$$
\begin{equation*}
\left|n_{k}-n_{s}\right| \geqslant 1 \quad \text { for } \quad k=1,2, \ldots, m, \quad k \neq s \tag{1.3}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|a_{n_{s}}(P)\right| \leqslant C\left(n_{s}+1\right)^{m-1 / q}\|P\|_{L_{p}(c, 1)} \tag{1.4}
\end{equation*}
$$

where $C=C(c, m)$ depends neither on n_{s} nor on P.
The proof gives some information about the constant C. Let $A=$ $\left(2 e /\left(1-c^{1 /(m-1)}\right)\right)^{m-1}$. Then (1.4) holds with $C=A$ if $p=\infty$, and with $C=$ $2^{m} A(1+A)$ if $p<\infty$. The estimate (1.4) is the best possible in the sense that there exists $B_{m}>0$ and polynomials $P_{m, n}, n=1,2, \ldots$ of length m such that

$$
\begin{equation*}
\left|a_{n}\left(P_{m, n}\right)\right| \geqslant B_{m}(n+1)^{m-1 / q}\left\|P_{m, n}\right\|_{L_{p}(c, 1)} \tag{1.5}
\end{equation*}
$$

(see [3]). It is sufficient to let $P_{m, n}=x^{n}(1-x)^{m-1}$. Then $a_{n}(P)=1$ and it is easy to check that

$$
\left\|P_{m, n}\right\|_{L_{p}(0,1)} \leqslant \frac{K_{m}}{(n+1)^{m \cdots 1 / q}},
$$

so that (1.5) holds with $B_{m}=1 / K_{m}$.
Instead of (3) we can consider the apparently more general condition

$$
\begin{equation*}
\operatorname{Min}_{k . k \neq s}\left|n_{k}-n_{s}\right|=h \tag{1.6}
\end{equation*}
$$

If the exponents n_{k} in (1.1) satisfy (1.6) with $h \neq 1$ let

$$
\tilde{P}(x)=\sum_{k=1}^{m} \tilde{a}_{v_{k}} x^{v_{k}}, \quad \text { where } \quad \tilde{a}_{v_{k}}=a_{n_{k}}
$$

and $v_{k}=1 / h\left(n_{k}+(1-h) / p\right)$. Since

$$
a_{n_{s}}(P)=\tilde{a}_{v_{s}}(\widetilde{P}), \quad\left|v_{k}-v_{s}\right| \geqslant 1
$$

and

$$
\|\widetilde{P}\|_{L_{p}\left(c^{h}, 1\right)}=h^{1 / p}\|P\|_{L_{p}(c, 1)}
$$

applying Theorem 1 to \widetilde{P} we obtain the following result: If P is a Dirichlet polynomial of length m, given by (1.1), if (1.6) holds, and if $h \geqslant h_{0}>0$, then

$$
\left|a_{n_{s}}(P)\right| \leqslant C\left(n_{s}+\frac{1}{p}+\frac{h}{q}\right)^{m-1 / q} h^{1-m}\|P\|_{L_{p}(c, 1)}
$$

where $C=C\left(c, m, h_{0}\right)$ is independent of n_{s}, h, and P.
From

$$
\begin{equation*}
\left(1 / \mid a_{n_{s}}\right)\left\|\sum a_{n_{k}} x^{n_{k}}\right\|_{L_{p}(c, 1)}=\left\|x^{n_{s}}-\sum_{k \neq s} b_{n_{k}} x^{n_{k}}\right\|_{L_{p}(c, 1)} \tag{1.7}
\end{equation*}
$$

where $b_{n_{k}}=-a_{n_{k}} / a_{n_{s}}$, it follows that any upper bound for the coefficient $\left|a_{n_{s}}\right|$ provides a lower bound for the right-hand side of (1.7). Thus Theorem 1 can be phrased in the following dual form:

Theorem 1'. Let $\lambda \geqslant 0$ and

$$
d_{c, p}\left(x^{\lambda}, N\right)=\inf \left\{\left\|x^{\lambda}-\sum_{j=1}^{N} b_{j} x^{\lambda j}\right\|_{L_{p}(c, 1)}: b_{j} \in R, \lambda_{j} \geqslant 0,\left|\lambda_{j}-\lambda\right| \geqslant 1\right\} .
$$

Then there exist positive constants K_{1} and K_{2}, depending only on c and N, such that

$$
\begin{equation*}
K_{1}(\lambda+1)^{-N-1 / p} \leqslant d_{c, p}\left(x^{\lambda}, N\right) \leqslant K_{2}(\lambda+1)^{-N-1 / p} . \tag{1.8}
\end{equation*}
$$

Under more restrictive conditions (1.8) was proved by Borosh, Chui, and Smith [3].

Two results, closely connected to Theorem 1 ', should be pointed out.
Saff and Varga have proved the following theorem (part one of Theorem 3.1 in [4]).

Let the $k+1$ integers μ_{0}, \ldots, μ_{k} be fixed, with $0 \leqslant \mu_{0}<\mu_{1}<\cdots<\mu_{k}$. For each non-negative integer n, set

$$
E_{n}=E_{n}\left(\mu_{0}, \ldots, \mu_{k}, q\right):=\inf \left\|x^{n}\left(x^{\mu_{k}}-\sum_{j=0}^{k-1} c_{j} x^{\mu_{j}}\right)\right\|_{L_{q}(0,1)}
$$

where the infimum is taken over all $\left(c_{0}, c_{1}, \ldots, c_{k-1}\right) \in R^{k}$, and where $1 \leqslant q \leqslant \infty$. Then

$$
\lim _{n \rightarrow \infty} n^{k+1 / q} E_{n}=\frac{\varepsilon_{k}}{k!} \prod_{j=0}^{k-1}\left(\mu_{k}-\mu_{j}\right)
$$

where

$$
\varepsilon_{k}=\varepsilon_{k}(q):=\inf \left\{\left\|e^{-t}\left(t^{k}-h(t)\right)\right\|_{L_{q}(0,+\infty)}: h \in \pi_{k-1}\right\}
$$

and π_{n} is the class of all polynomials of degree at most n.
In [2] one of the authors, using a theorem of Smith [5], has shown that the equality

$$
\begin{aligned}
& \inf \left\{\left\|x^{\lambda}-\sum_{j=1}^{l} a_{j} x^{\lambda_{j}}\right\|_{L_{x}(0,1)}: a_{j} \in R, \lambda_{j} \in R,\left|\lambda_{j}-\lambda\right| \geqslant 1, j=1, \ldots, l\right\} \\
& \quad=\inf \left\{\left\|x^{\lambda}(1-x P(\log x))\right\|_{L_{x}(0,1)}: P \text { polynomial of degree } \leqslant l-1\right\}
\end{aligned}
$$

holds if $\lambda<1$, and has conjectured that the same equality holds also for $\lambda \geqslant 1$.

2. Proof of Theorem 1.

We shall consider first the case $p=\infty$. Let $M=\max _{c \leqslant x \leqslant 1}|P(x)|$, $0 \leqslant c<1$, let $r \in(c, 1)$ and $\alpha=r^{1 /(m-1)}$. Evaluating the polynomial P at m points $\alpha^{j}, j=0,1, \ldots, m-1$ we obtain a system of m linear equations

$$
\begin{equation*}
\sum_{k=1}^{m} a_{n_{k}} \alpha^{j n_{k}}=P\left(\alpha^{j}\right), \quad j=0,1, \ldots, m-1 \tag{2.1}
\end{equation*}
$$

The determinant of this system is the Vandermonde determinant

$$
\Delta_{m}=\Delta_{m}\left(\alpha^{n_{1}}, \alpha^{n_{2}}, \ldots, \alpha^{n_{m}}\right)=\left|\begin{array}{cccc}
1 & 1 & \cdots & 1 \tag{2.2}\\
\alpha^{n_{1}} & \alpha^{n_{2}} & \cdots & \alpha^{n_{m}} \\
\alpha^{2 n_{1}} & \alpha^{2 n_{2}} & \cdots & \alpha^{2 n_{m}} \\
\vdots & \vdots & & \vdots \\
\alpha^{(m-1) n_{1}} & \alpha^{(m-1) n_{2}} & \cdots & \alpha^{(m-1) n_{m}}
\end{array}\right|
$$

and so

$$
\begin{equation*}
\Delta_{m}=\prod_{\substack{i, j=1, \ldots, m \\ i<j}}\left(\alpha^{n_{i}}-\alpha^{n_{j}}\right) \tag{2.3}
\end{equation*}
$$

If $A_{j, k}$ denotes the minor of A_{m} corresponding to the entry in the j th row and the k th column, we obtain from (2.1) that

$$
\begin{equation*}
\alpha_{n_{k}}=\frac{1}{\Delta_{m}} \sum_{j=1}^{m}(-1)^{j+k} P\left(\alpha^{j-1}\right) A_{j, k}, \quad k=1, \ldots, m \tag{2.4}
\end{equation*}
$$

Explicit expressions for the minor $A_{j, k}$ are known, and can easily be deduced. If $\alpha^{n_{k}}$ is replaced by z, from (2.2) and (2.3) it follows that

$$
\begin{aligned}
\sum_{j=1}^{m}(& -1)^{j+k_{z}-1} A_{j, k} \\
& =\left(\alpha^{n_{1}}-z\right) \cdots\left(\alpha^{n_{k-1}}-z\right)\left(z-\alpha^{n_{k+1}}\right) \cdots\left(z-\alpha^{n_{m}}\right) \Delta_{m-1, k}
\end{aligned}
$$

where

$$
\Delta_{m-1, k}=A_{m-1}\left(\alpha^{n_{1}}, \ldots, \alpha^{n_{k-1}}, \alpha^{n_{k+1}}, \ldots, \alpha^{n_{m}}\right)
$$

Computing the coefficient of z^{j-1} on the right-hand side we find that

$$
\begin{equation*}
(-1)^{j+k} A_{j, k}=(-1)^{k-1} \Delta_{m-1, k}(-1)^{m-j} \sigma_{m-j}\left(\alpha^{n_{1}}, \ldots, \alpha^{n_{k-1}}, \alpha^{n_{k+1}}, \ldots, \alpha^{n_{m}}\right) \tag{2.5}
\end{equation*}
$$

Here $\sigma_{q}, q=0,1, \ldots, m-1$ are the elementary symmetric functions in $m-1$ variables:

$$
\sigma_{0}=1 \quad \text { and } \quad \sigma_{4}\left(y_{1}, \ldots, y_{m-1}\right)=\sum y_{s_{1}} y_{s_{2}} \cdots y_{s_{4}}
$$

where the summation is extended over all subsets $\left(s_{1}, s_{2}, \ldots, s_{q}\right)$ of cardinality q of the set ($1,2, \ldots, m-1$).
Combining (2.4) and (2.5) we obtain

$$
\begin{align*}
a_{n_{k}}= & (-1)^{k+m} \frac{\Delta_{m-1, k}}{\Delta_{m}} \sum_{j=1}^{m}(-1)^{j-1} \\
& \times \sigma_{m-j}\left(\alpha^{\left.n_{1}, \ldots, \alpha^{n_{k-1}}, \alpha^{n_{k+1}}, \ldots, \alpha^{n_{m}}\right) P\left(\alpha^{j-1}\right) .} .\right. \tag{2.6}
\end{align*}
$$

We observe next that $\left|P\left(\alpha^{j-1}\right)\right| \leqslant M$ and that the quantities σ_{m-j} are non-negative. Since $\sum \sigma_{m-j}\left(y_{1}, \ldots, y_{m-1}\right)=\Pi\left(1+y_{j}\right)$, we obtain

$$
\begin{aligned}
\mid \sum_{j=1}^{m} & (-1)^{j-1} \sigma_{m-j}\left(\alpha^{n_{1}}, \ldots, \alpha^{n_{k-1}}, \alpha^{n_{k+1}}, \ldots, \alpha^{n_{m}}\right) P\left(\alpha^{j-1}\right) \mid \\
& \leqslant M \sum_{j=1}^{m} \sigma_{m-j}\left(\alpha^{n_{1}}, \ldots, \alpha^{n_{k-1}}, \alpha^{\left.n_{k+1}, \ldots, \alpha^{n_{m}}\right)}\right. \\
& \leqslant M \prod_{\substack{1 \leqslant j \leqslant m \\
j \neq k}}\left(1+\alpha^{n_{j}}\right) \\
& \leqslant 2^{m-1} M .
\end{aligned}
$$

On the other hand, from (2.3) it follows that

$$
\left|\frac{\Delta_{m}}{\Delta_{m-1, k}}\right|=\left(\alpha^{n_{1}}-\alpha^{n_{k}}\right) \cdots\left(\alpha^{n_{k}-1}-\alpha^{n_{k}}\right)\left(\alpha^{n_{k}}-\alpha^{n_{k}+1}\right) \cdots\left(\alpha^{n_{k}}-\alpha^{n_{m}}\right) .
$$

If $j<k$ we have $\alpha^{n_{j}}-\alpha^{n_{k}}=\alpha^{n_{j}}\left(1-\alpha^{n_{k}-n_{j}}\right)>\alpha^{n_{j}}(1-\alpha)$; and if $j>k, \alpha^{n_{k}}-\alpha^{n_{j}}>$ $\alpha^{n_{k}}(1-\alpha)$. So

$$
\begin{align*}
\left|\frac{A_{m}}{A_{m-1, k}}\right| & \geqslant(1-\alpha)^{m-1} \alpha^{n_{1}+\cdots+n_{k-1}+(m-k) n_{k}} \\
& \geqslant(1-\alpha)^{m-1} \alpha^{(m-1) n_{k}} . \tag{2.8}
\end{align*}
$$

It follows from (2.6), (2.7), and (2.8) that

$$
\begin{equation*}
\left|a_{n}\right| \leqslant\left(\frac{2}{(1-\alpha) \alpha^{n}}\right)^{m-1} M, \quad \text { where } \quad n=n_{k} \text {. } \tag{2.9}
\end{equation*}
$$

Since $\alpha^{m-1}=r$, and r was an arbitrary number in $[c, 1$) we can choose now α in $\left[c^{1 /(m-1)}, 1\right)$ so that the right-hand side of (2.9) takes its smallest value. For that we need to distinguish two cases:
(i) if $n /(n+1) \geqslant c^{1 /(m-1)}$, we choose $\alpha=n /(n+1)$;
(ii) if $n /(n+1)<c^{1 /(m-1)}$, we choose $\alpha=c^{1 /(m-1)}$.

In both cases we have

$$
\frac{1}{\alpha^{n}} \leqslant\left(1+\frac{1}{n}\right)^{n} \leqslant e
$$

In the first case we obtain

$$
\left|a_{n}\right| \leqslant(2 e(n+1))^{m-1} M,
$$

in the second case

$$
\left|a_{n}\right| \leqslant\left(\frac{2 e}{1-c^{1 /(m-1)}}\right)^{m-1} M
$$

Hence we have

$$
\begin{equation*}
\left|a_{n}\right| \leqslant A(n+1)^{m-1}\|P\|_{\infty} \tag{2.10}
\end{equation*}
$$

where $\|P\|_{\infty}=\max _{c \leqslant x \leqslant 1}|P(x)|$ and

$$
A=\left(\frac{2 e}{1-c^{1 /(m-1)}}\right)^{m-1}
$$

We consider now the case $1 \leqslant p<\infty$. Let s be a non-negative integer and let

$$
Q(x)=-\int_{x}^{1} P(t) t^{s} d t
$$

Clearly,

$$
Q(x)=\sum_{k=1}^{m} \frac{a_{n_{k}}}{n_{k}+s+1} x^{n_{k}+s+1}-C .
$$

Thus 0 is a polynomial of length $\leqslant m+1$ and $Q+C$ is a polynomial of length $\leqslant m$. We shall apply the inequality (2.10) twice: first to the polynomial Q to estimate the constant term C, then to the polynomial $Q(x)+C$ to estimate all the coefficients $a_{n_{k}} /\left(n_{k}+s+1\right)$.

First application of inequality (2.10) gives

$$
\begin{equation*}
|C| \leqslant A\|Q\|_{\infty} \tag{2.11}
\end{equation*}
$$

Second application gives

$$
\begin{equation*}
\left|a_{n_{k}}\right| /\left(n_{k}+s+1\right) \leqslant A\left(n_{k}+s+2\right)^{m-1}\|Q+C\|_{\infty} . \tag{2.12}
\end{equation*}
$$

From (2.11) and (2.12) we deduce

$$
\begin{equation*}
\left|a_{n_{k}}\right| \leqslant B\left(n_{k}+s+2\right)^{m}\|Q\|_{\infty} \tag{2.13}
\end{equation*}
$$

where we can take $B=A(A+1)$. Since

$$
Q(x)=-\int_{x}^{1} P(t) t^{s} d s
$$

we have

$$
\begin{aligned}
\|Q\|_{\infty} & \leqslant \int_{c}^{1}|P(t)| t^{s} d t \\
& \leqslant\left(\int_{0}^{1} t^{4 s} d t\right)^{1 / q}\|P\|_{L_{p}(c, 1)} \\
& \leqslant\left(\frac{1}{s q+1}\right)^{1 / 4}\|P\|_{L_{p}(c, 1)}
\end{aligned}
$$

or

$$
\|Q\|_{\infty} \leqslant\left(\frac{1}{s+1}\right)^{1 / q}\|P\|_{L_{p}(c, 1)}
$$

where $1 / p+1 / q=1$. From this inequality and (2.13) follows that

$$
\left|a_{n_{k}}\right| \leqslant B\left(n_{k}+s+2\right)^{m} \frac{1}{(s+1)^{1 / q}}\|P\|_{L_{p}(t, 1)} .
$$

Choosing here $s=n_{k}$ we obtain

$$
\left|a_{n_{k}}\right| \leqslant 2^{m} B\left(n_{k}+1\right)^{m-1 / q}\|P\|_{L_{p}(c, 1)}
$$

and the theorem is proved.

References

1. B. M. Baishanski, Approximation by polynomials of given length, Illinois J. Math. 27 No. 3 (1983), 449-458.
2. B. M. Baishanski, Given two spaces of generalized Dirichlet polynomials, which one is closer to x^{c} ? in "Proc. Internat. Conf. Constr. Function Theory Varna," 1984; Bulgar. Acad. Sci.
3. I. Borosh, C. K. Chui, and P. W. Smith, On approximation of x^{N} by incomplete polynomials, J. Approx. Theory 24 (1978), 227-235.
4. E. B. Saff and R. S. Varga, On lacunary incomplete polynomials, Math. Z. 177 (1981), 297-314.
5. P. W. Smith, An improvement theorem for Descartes systems, Proc. Amer. Math. Soc. 70 (1978), 26-30.
